
NUMERICAL SIMULATION OF NONEQUILIBRIUM PROCESSES IN AN 

ELECTRON-HOLE PLASMA IN BINARY HETEROSTRUCTURES. 

2. COMPUTATIONAL EXPERIMENT 

V. A. Nikolaeva, V. I. Ryzhii, and B. N. Chetverushkin UDC 539.219.1:533.9 

The results of a computational experiment simulating a dense electron-hole 
plasma in binary heterostructures are presented. 

Heating of the electron-hole plasma (EHP) in semiconductor structures can substantially 
affect their properties. Such heating is linked to the fact that in energy of the carriers 
(electrons and holes) injected through the heterojunction substantially exceeds the thermal 
energy. Naturally, an appreciable devia{ion of the average energy of electrons and holes 
from the thermal energy occurs if the energy transfer from the EHP to the lattice is charac- 
terized by quite long energy relaxation times. 

The heating of a dense quasineutral EHP was simulated numerically based on the quasi- 
hydrodynamic equations [i] in [2]. The situations in which the density and temperature dis- 
tributions of the EHP under conditions of heating, though they turned out to be nonuniform, 
were characterized by scales of nonuniformity of the order of the dimensions of the system, 
were studied. However, heating of the EHP in systems whose dimensions are much larger than 
the diffusion length s and the cooling length of the charge carriers gr can cause the system 
to become unstable with respect to fluctuations whose scale is comparable to s and s [3, 4]. 
This instability leads to stratification and separation of the EHP, i.e., to the appearance 
of dissipative structures in it. 

This work is concerned with the numerical simulation of the dynamics of stratification 
of a dense quasineutral EHP in current-heated binary heterostructures. In our preceding work 
[5], we described the mathematical model used, and we also presented the algorithm for the 
numerical solution of this problem, so that here we shall briefly describe the mathematical 
formulation of the problem. 

We are studying binary p-i-n heterostructures with wide-gap n and p regions and a 
narrow-gap i region, the charge carriers (electrons and holes) in which have the same effec- 
tive masses. It is assumed that owing to the high density of electrons and holes injected 
into the i region, their energy distribution is Maxwellian with the same effective temper- 
ature @. 

In the situation under study the EHP is characterized by the carrier density N and the 
effective carrier temperature @, which satisfy the following equations in the two-dimen- 
sional geometry: 

aN a ~ a ~ a---#- = a x  - - - T  [D (0) N] § ~ [D (@) N] § R (N, 0), ( 1 ) 

3 
2 a(N@)aT : 8xa { • @) -~a@ -I- ( +  --k o~)@a~ [D(@)N]}-F 

(2) 

Here • @) = (5/2 + ~)ND(@), where ~ is a numerical coefficient determined by the energy 
dependence of the momentum relaxation time. The terms R(N, @) and P(N, 0) describe the re- 
combination of electrons and holes and their energy relaxation. Next we set 
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Fig .  1. Dynamics of  t he  e s t a b l i s h m e n t  of  s t a t i o n -  
a ry  t e m p e r a t u r e  T and d e n s i t y  n d i s t r i b u t i o n s :  I )  
f o r  s = 5, t he  broken curves  co r r e spond  to  t = 
0.01 and s o l i d  cu rves  co r r e spond  to  t >_ 0 .03;  I I )  
f o r  s = 20, t he  broken curves  co r r e spond  to  t = 
0 .06 and t he  s o l i d  cu rves  co r r e spond  to  t > 0 .6 .  
All quantities are dimensionless. 

R(N, O)--  N t - - N  , p(N, 0 ) :  N(O~--0)  (3) 
T~(o) , , ( o )  

Assuming that the active region is rectangular with dimensions s and s the boundary 
conditions for Eqs. (i) and (2) are given in the form: 

- -  a---z [D(O) N] = 4- J, ( 4 )  
Z = O  , l  z 

ao ~x) oa [D(O)N]I z=o,tz = -4- A.J ,  - -{•  O) - - ~ +  ( +  + OZ , (5) 

a [D(O) N] x=~ = 0, (6) OX 

a@ I = o. (7) x (N, @) ~ .x=o,,x 

Here J J(t) X ( - ~ -  (X Ix)  2) . . . . . . .  , and A i s  t he  magni tude  of  t he  jump of  t he  bo t tom of  t he  
2 

conduction band (and of the top of the valence band) in the heterojunctions. The initial 
uniform or perturbed density and temperature distributions are given. 

In the case when the thickness of the active i region s is much smaller than the diffu- 
sion length s and the cooling length s the following one-dimensional model, which makes 
it possible to study the density N and temperature @ distributions in a direction perpen- 
dicular to the direction of current flow (i.e., in the plane of the heterostructure layers), 
is used: 

0N _ a-"  [D(O) N ] + R ( N ,  0 ) +  2_]_J, ( 8 ) 
aT ax~ l~ 

---- -- • O) + + ~ [D(O) NI +P(N, O)+ 2JA 
2 ox -s t---Z' 
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OX [D(0) N] x=o,z~---- 0, •  @) 0~_ x=o,z~ = 0, (10)  

N[~= o = No -}- 8No, | = | + 6@0, (11) 

where N o , @0 are the uniform stationary solutions of Eqs. (8) and (9), while the quantities 
6N 0 and ~O 0 are the perturbations of the initial uniform states. 

In the numerical calculations [5] the following dimensionless quantities were used: 

N @ X Z lx a~ 
~ n , - - - =  T ,  - - x ,  - - z ,  - -  l, - - a ,  

TD "~D %D 
(12)  

J (-c, X ) l ~  _ I (t, x),  A __ 8, 

D N z  | 

where D = D(Os z r = ~r(@s ~a = Ta(@s 

Using the one-dimensional model given by (8)-(11), we studied the dynamics of stratifi- 
cation of EHP in the active region. The following values of the parameters were chosen a = 
1.5; r = 0; e = - 0.05; T R = 10-2; T E = i0-~; I = 50. The initial conditions were given in 
the form 

( ) ( 7) __~kx , T(x ,  0)--~To 1 ~ 0 . 1  cos ~ . n(x,  0 ) =  no 1 __+ 0.1 cos t 

The c a l c u l a t i o n s  e s t a b l i s h e d  t h a t  f o r  T o J T 1, 6 < 6~ and T o ~_ T2, 6 )_ 6 2 ( f o r  t h e  cho-  
sen  values of the parameters T I ~ 3, T 2 z 14), where ~0 and 6 are related by the relation 
T O - 1 = 6~e(T0)/Tr, i.e,, for relatively weak and strong overheating of the EHP by the 
current, respectively, the given initial nonuniform perturbations (ii) are smoothed out and 
spatially uniform stationary distributions of the EHP density and temperature are established. 
The values of Tl, 61 and T2, 62 are essentially the values of the parameters for which bi- 
furcation of the solution of the system (8)-(11) occurs. 

For the case of relatively average overheating, in particular, when T O = i0, n o = 2, 6 = 
5600, the establishment of stationary EHP density and temperature distributions was studied 
as a function of the length of the region ~. The calculations were performed for s = i, 5, 
i0, 20, and 40. Figure ishows the typical stratified distributions (solid curves), charac- 
terized by nonuniformities which are much smaller than the length of the active region s 
It is evident from the figure that the number of strata (narrow cold regions with high den- 
sity) increases as s increases (for s = 40 there are five strata). It is interesting that 
the established nonuniform distributions of the effective temperature and concentration 
observed for s < 20 and leading to different stratified stationary distributions with the 
same parameters but slightly different perturbations in the initial conditions are notunique: 
n(x, 0) = n0(l - 0.i cos 2~x/~), T(x, 0) = T0(l + 0.I cos 2~x/~) and n(x, 0) = n0(l + 0.I 
cos 2~x/s T(x, 0 = T0(l - 0.i cos 2~x/s As the length of the structure increases (s > 
20) for different initial conditions the same stationary EHP density and effective temperature 
distributions are established, though these stratified distributions evolve differently. 
The times for establishing stationary distributions (in units of the characteristic energy 
relaxation time of the carriers) are as follows: 

! 1 5 10 20 40 

t/'rE 500 1000 I250 5000 5000 

If the size (thickness) of the active region in the direction of current flow ~z is not 
small compared with the diffusion length ED and the cooling length EE, then the EHP density 
and effective temperature distributions have a two-dimensional character. For relatively 
small overheatings of the EHP stationary distributions whose scale of nonuniformity is com- 
parable to the geometric dimensions of the active region of the heterostructure are establi- 
shed. Figure 2 shows the contour lines of constant temperature of the EHP in the active 
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F i g .  2 F i g .  3 
F i g .  2. Example o f  r e s u l t s  o f  c a l c u l a t i o n s  f o r  t h e  case o f  weak 
o v e r h e a t i n g  o f  t h e  EHP. The l i n e s  o f  c o n s t a n t  t e m p e r a t u r e  a re  g i -  
ven  f o r  t h e  f o l l o w i n g  t i m e s :  a)  t = 5 "10  -4 , 1) T = 8 . 8 2 7 ;  2)  
8 . 9 5 2 ;  3) 8 . 9 7 6 ;  4)  8 . 9 9 3 ;  b)  t = 6"10 -2 , 1) T = 8 . 8 5 8 ;  2) 8 . 8 9 5 ;  
3) 8.949; 4) 8.986; 5) 9.004; 6) 9.023. All quantities are di- 
mensionless. 

Fig. 3. Example of calculations for the case of quite strong over- 
heating of the EHP. The lines of constant density at different 
times: a) t = 9"10 -7 , i) n = 0.458; 2) 0.749; 3) 1.039; 4) 1.329; 
5) 1.619; 6) 1.909; b) t = 4.42"10 -4 , i) n = 0.991; 2) 1.573; 3) 
2.157; 4) 2.740; 5) 3.324; 6) 3.907. All quantities are dimension- 
less. 

region (in view of the symmetry of the problem only half the region is shown in the figure) 
at different times for the following values of the parameters: s = i, a = 1/3, I = 50, 6 = 
12.1; T R = 4"10-3; ~E = i'12"i0-i; no = 2.8; T o = 9. The distributions for t ~ 0.06 al- 
ready correspond to the steady state. 

In the case of quite strong overheating of the EHP a tendency toward stratification of 
the density and temperature distributions, i.e., toward the formation of nonuniformities 
of relatively small scale, is clearly observed like in the one-dimensional case. The lines 
of constant EHP density for this case (s = i0, ~ = i0, T R = i0-2, ~E = 10 -4, I = 50, n o = 2 
(i - 0.i cos 2~x/s T o = i0(i + 0.i + 0.i cos 2~x/s at different times are shown in Fig.3. 
Unfortunately, it is impossible to follow the establishment of stationary stratified dis- 
tributions in a two-dimensional geometry because of the excessive amount of computer time 
required (for this variant the maximum achievable time step in the calculations is only 10-8). 

Thus, with the help of a computational experiment it was shown that depending on the 
magnitude of the pumping current and therefore the overheating of the EHP both uniform and 
stratified stationary density and effective temperature distributions are possible. In the 
spatially one-dimensional case the form of the stratified distributions as a function of the 
length of the active region of the heterostructure was established. 

NOTATION 

s diffusion length; s cooling length of the carriers; N and n, carrier (electron and 
hole) densities; 0, T, are the effective temperatures; D(@), • 0), coefficients of diffu- 
sion and thermal conductivity of the EHP; R(N, O), P(N, 0), recombination and relaxation 
terms; ~r(O), ~e(@), characteristic lifetimes and energy relaxation times of the carriers; Ns 
density of EHP in the absence of injection through the heterojunctions; @s lattice temper- 
ature; s s s dimensions of the active region; a x and a, dimensions of the injecting 
contact; X, x, Z, and z, spatial coordinates; J and I, densities of the injected current; A,6, 
energies of the injected carriers; X(x), Heaviside function; and: �9 and t, times. 

. 
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STABILITY AND FORM OF AN ARC COLUMN IN A TRANSVERSE GAS FLOW 

S. G. Lisitsyn and N. V. Pashatskii UDC 621 .3 .014 .31  

The analytic conditions for stable burning of an electric arc in a gas flow 
are obtained. The form of the arc column in a transverse gas flow is deter- 
mined. 

A great deal of attention is being devoted to the problem of the stability of an elec- 
tric arc. A number of authors [i-3] have studied the spatial stability of an arc neglect- 
ing the effect of the electric circuit by introducing the concepts of mass and nonmass 
forces. Others have studied the energy stability of electric arc circuits without a gas flow 
[4-6] and with a gas flow [7-8], neglecting the details of the motion of the arc in space. 
The spatial and energy stability of different electric arcs is studied simultaneously in [9] 
using the "force" model. The results on the stability are based on an analysis of the forces 
which act on the arc and which are difficult to determine in experiments. 

The form of the arc column has been studied quite completely for an arc in a longitudinal 
flow. As regards an arc in a transverse flow, the form of the arc is determined primarily 
experimentally. 

We shall study a cylindrical arc stabilized by electrodes in a transverse gas flow. We 
shall assume that there is no external magnetic field, while the intrinsic magnetic field is 
negligibly small. Then the equation expressing the balance of energy in the arc for a linear 
dependence of the gas properties on the enthalpy has the form [I0] 

0F 
ot + (w, v ~  : a~v ~ f +  W - -  e~) h, (1) 

where e-~ takes into account the radiative heat losses. We assume that the intensity of the 
electric field in the arc ~ depends on t and varies only along the arc, since, as investi- 
gations have shown [5, 6], the arc is stable with respect to the transverse perturbations of 
the field. 

Averaging Eq. (i) over the period of oscillations of the current in the circuit, if the 
arc is an ac current arc, and integrating over the cross section of the arc column, in the 
presence of perturbations in the system we obtain 

OH O2H 
- - - = a  ~ + p - - q +  F(x ,  t), (2)  

Ot Ox 2 

where p and q a r e ,  r e s p e c t i v e l y ,  t he  J o u l e  h e a t  and hea t  l o s s e s  to  t he  envi ronment  per  u n i t  
a rc  l e n g t h ;  F(x ,  t )  i s  t he  e x t e r n a l  p e r t u r b a t i o n .  The o v e r b a r  i n d i c a t i n g  ave rag ing  ove r  
t he  p e r i o d  i s  dropped he r e  and below. 

Equa t ion  (2)  must be supplemented  by Ohm's law f o r  the  c i r c u i t  and r e l a t i o n s  f o r  p and 
q: 

.t e (x ,  t) 1 + d x = !  ~s , 
- t /2  l 

(3) 
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